Product Description
Product Parameters
Universal coupling flange threaded Rotary Union High pressure stainless steel hydraulic Swivel Joint
Product name | high pressure rotary joint |
Size | Customized Size |
Max.Speed | 10–300RPM |
Max. Pressure | 0–35MPA |
Max. Temperature | 40–400ºC |
Applicable medium | Steam, oil, water, air, oxygen, hydrogen, etc |
Product Description
FAQ
Can your standard rotary unions be modified to meet the requirements of my application?
We can modify our standard rotary unions to fit your needs. Custom modifications to our standard products are quite common and easier than you may think. Modifications include changes to housing / shaft dimensions and materials, seal types, mounting configurations, connection sizes and types, and flow passage configurations. For more information see Standard Rotary Union Modifications.
Do you offer replacement seals and/or bearings for rebuilding your rotary unions?
Yes, seal and bearing kits are available for our rotary union products for on-location rebuilding and repair. Contact us to Get Started.
Can I use a different media than what is listed on your site?
Fuxuan products are only recommended for use with the specific media types listed. This ensures proper compatibility with all components; shaft / housing, bearings and seals.
How do I install/mount my rotary union into my equipment?
CAUTION: FUXUAN does not recommend mounting the rotary union with both the shaft & housing components solidly bolted into place. One of the 2 components should be mounted in a manner that allows for some movement in the event of misalignment. Using only the supply lines or hoses to fix the stationary component in place is also not recommended. An anti-rotation arm that attaches to the stationary part of the rotating union assembly and rests against part of the equipment framework is recommended.
What is the life expectancy of a rotary union?
The life expectancy of a rotary union varies widely depending on many application variables: media type, pressure, rotational speed, duty cycle, temperature, and more. If you need further assistance contact a member of our Sales Support Team.
Is there a quantity price break if I order multiple units?
To discuss quantity price breaks, contact a member of our Sales Support Team.
Which part of the rotary union stays stationary and which part rotates?
Functionally it makes no difference whether the shaft or the housing rotates. It is all dependent on how the assembly is mounted and installed on your machine or equipment.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | CE, ISO |
---|---|
Color: | Customized |
Customized: | Customized |
Standard: | International |
Type: | Connection |
Material: | Stainless Steel |
Samples: |
US$ 20/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
How do you calculate the torque capacity of a universal joint?
Calculating the torque capacity of a universal joint involves considering various factors such as the joint’s design, material properties, and operating conditions. Here’s a detailed explanation:
The torque capacity of a universal joint is determined by several key parameters:
- Maximum Allowable Angle: The maximum allowable angle, often referred to as the “operating angle,” is the maximum angle at which the universal joint can operate without compromising its performance and integrity. It is typically specified by the manufacturer and depends on the joint’s design and construction.
- Design Factor: The design factor accounts for safety margins and variations in load conditions. It is a dimensionless factor typically ranging from 1.5 to 2.0, and it is multiplied by the calculated torque to ensure the joint can handle occasional peak loads or unexpected variations.
- Material Properties: The material properties of the universal joint’s components, such as the yokes, cross, and bearings, play a crucial role in determining its torque capacity. Factors such as the yield strength, ultimate tensile strength, and fatigue strength of the materials are considered in the calculations.
- Equivalent Torque: The equivalent torque is the torque value that represents the combined effect of the applied torque and the misalignment angle. It is calculated by multiplying the applied torque by a factor that accounts for the misalignment angle and the joint’s design characteristics. This factor is often provided in manufacturer specifications or can be determined through empirical testing.
- Torque Calculation: To calculate the torque capacity of a universal joint, the following formula can be used:
Torque Capacity = (Equivalent Torque × Design Factor) / Safety Factor
The safety factor is an additional multiplier applied to ensure a conservative and reliable design. The value of the safety factor depends on the specific application and industry standards but is typically in the range of 1.5 to 2.0.
It is important to note that calculating the torque capacity of a universal joint involves complex engineering considerations, and it is recommended to consult manufacturer specifications, guidelines, or engineering experts with experience in universal joint design for accurate and reliable calculations.
In summary, the torque capacity of a universal joint is calculated by considering the maximum allowable angle, applying a design factor, accounting for material properties, determining the equivalent torque, and applying a safety factor. Proper torque capacity calculations ensure that the universal joint can reliably handle the expected loads and misalignments in its intended application.
How do you prevent backlash and vibration issues in a universal joint?
Preventing backlash and vibration issues in a universal joint involves various considerations and measures. Here are some approaches to minimize backlash and mitigate vibration problems:
- Precision manufacturing: High-quality, precision-manufactured universal joints can help reduce backlash and vibration. Accurate machining and assembly processes ensure tight tolerances and minimize clearances between components, resulting in improved performance and reduced backlash.
- Proper lubrication: Adequate lubrication is essential to minimize friction and wear, which can contribute to backlash and vibration. Using the recommended lubricant and following the manufacturer’s guidelines for lubrication intervals help ensure smooth operation and reduce backlash in the joint.
- Alignment: Proper alignment between the input and output shafts is crucial for minimizing backlash and vibration. Aligning the shafts within the manufacturer’s specified tolerances ensures that the joint operates within its designed parameters, reducing stress and potential backlash issues.
- Balance: Balancing the rotating components, such as yokes and crosses, helps minimize vibration. Imbalances can cause uneven forces and induce vibrations in the joint and the connected system. Balancing techniques, such as adding counterweights or using precision balancing equipment, ensure smoother operation and minimize vibration-related problems.
- Vibration damping: Applying vibration damping techniques can help mitigate vibration issues. This may involve using vibration-absorbing materials, such as rubber or elastomeric elements, at appropriate locations to absorb and dissipate vibrations. Dampening vibrations can reduce the transmission of unwanted motion and minimize the potential for backlash.
- Regular maintenance: Routine inspection and maintenance of the universal joint are essential to prevent backlash and vibration problems. This includes checking for wear, proper lubrication, and addressing any signs of misalignment or damage. Timely maintenance helps identify and rectify potential issues before they escalate and affect the performance and reliability of the joint.
- Appropriate joint selection: Choosing the right type of universal joint for the specific application is crucial. Different joint designs, such as single joint, double joint, constant velocity (CV) joint, or Cardan joint, have varying characteristics and capabilities. Assessing the requirements of the system and selecting a joint that suits the application can help minimize backlash and vibration issues.
Implementing these measures and considering the specific operating conditions and requirements of the system can help prevent or minimize backlash and vibration issues in a universal joint. It is important to consult the manufacturer’s guidelines and recommendations for proper installation, operation, and maintenance of the universal joint to ensure optimal performance and longevity.
What industries commonly use universal joints?
Universal joints, also known as U-joints, are utilized in various industries where the transmission of rotary motion between misaligned shafts is required. Here are some of the industries that commonly use universal joints:
- Automotive: The automotive industry extensively employs universal joints in vehicles. Universal joints are essential components in drivelines, connecting the transmission to the drive shaft and allowing power to be transmitted to the wheels. They accommodate the misalignment caused by the suspension system and enable smooth power transfer.
- Industrial Manufacturing: Universal joints find widespread use in industrial manufacturing applications. They are employed in machinery and equipment such as conveyors, mixers, pumps, printing presses, and machine tools. Universal joints facilitate the transmission of motion at angles, enabling efficient operation and flexibility in various manufacturing processes.
- Aerospace: The aerospace industry utilizes universal joints in aircraft and spacecraft systems. They are used in control mechanisms for movable surfaces such as wings, flaps, and rudders. Universal joints enable the transfer of motion and control inputs between different components, ensuring precise and reliable operation of aerospace systems.
- Marine: Universal joints are commonly employed in the marine industry for various applications. They are used in propulsion systems to transmit power from the engine to the propeller shaft. Universal joints also find application in steering systems, allowing for the transfer of motion between the steering wheel and the rudder or outboard motor.
- Agriculture: The agricultural industry relies on universal joints in various machinery and equipment used in farming operations. Tractors, combines, harvesters, and other agricultural machinery utilize universal joints to transmit power between different components, accommodating misalignment caused by the terrain and articulation requirements.
- Construction and Heavy Equipment: Universal joints are commonly found in construction and heavy equipment. They are used in machinery such as cranes, excavators, loaders, and concrete mixers. Universal joints enable the transmission of power and motion between different parts of the equipment, accommodating misalignment and articulation required in construction and heavy-duty operations.
- Railway: The railway industry relies on universal joints for various applications. They are used in drivetrain systems to transmit motion between different components, such as the engine, gearbox, and axles. Universal joints allow for smooth power transfer while accommodating the misalignment caused by the movement and suspension of trains.
- Robotics and Automation: Universal joints are utilized in robotics and automation systems. They enable the transmission of motion between misaligned components in robotic arms, manipulators, and other automated systems. Universal joints provide flexibility and precise movement, allowing for efficient operation of robotic and automated processes.
These are just a few examples of the industries that commonly use universal joints. Their ability to transmit rotary motion between misaligned shafts makes them essential components in a wide range of applications, enabling efficient and reliable operation across various industries.
editor by CX 2024-03-28